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Abstract

The Feynman diagram technique was used to calculate the non-relativistic
part of the energy of 1s23I3I' and 1523141’ states. The Hartree—Fock part of
the energy was calculated by the Z-expansion method. The correlation part
of the energy was obtained as the difference between these two energies
represented in form of 1/Z series. The resulting data were compared with
theoretical data obtained for the identification of electron spectra
(1s2313F — 15221 transitions).

1. Introduction

Perturbation theory is now of typical use in quantum calcu-
lations for multielectron systems. There are various pertur-
bational procedures, in which some appropriate quantity
plays the principal part and other atomic characteristics are
to be derived from it. Perturbation theory expansion for
that basic quantity is usually obtained employing some
technique aimed to the minimization of the perturbation.
Many-body Green functions and scattering matrix are likely
to be the most popular object to start from, as well as scat-
tering wave functions. Various ionization and recombi-
nation processes, radiative transitions between atomic levels
and non-radiative rearrangements in atoms or ions can be
described in terms of either of these quantities, though they
are convenient for different calculations. In these lines, the
S-matrix approach has its evident advantages. The field for-
mulation of the theory admits large uniformity in describing
systems with any number of electrons involving any sort of
interaction between them. All expressions can easily be
made gauge invariant, relativistic effects are introduced in a
straightforward way. The theory can be adapted to describe
any kind of atomic processes and permits a number of sim-
plifications. The S-matrix is immediately related to tran-
sition amplitudes, which makes it convenient in
multichannel scattering calculations. Finally, R-matrices
and Green functions can be simply expressed through S-
matrices.

Since early 60-s S-matrix perturbation theory in second-
ary quantization representation is widely used in atomic cal-
culations. The energies of the ground and some lowest
excited states of a large number of ions have been calculated
up to the third-order contributions (see, for example [1-3]).
The expansion in powers of 1/Z have been constructed for
the corrections due to Coulomb as well as to the relativistic
Breit interactions between atomic levels [4, 5]. Explicit Z-
dependence implies that the energy of a stationary level is
calculated only once for the whole isoelectronic sequence.
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The same procedure was used for an autoionizing level [6].
In the above-mentioned papers the 1s¥2s™2p” (0 < k <2,
0 <m < 2,0 < n < 6) states were considered.

Some years ago were obtained experimental data for
more excited states as 3[3/' and 1523131’ [7-12]. The spectra
of 15?3131’ states were the most interesting to study since the
ejected electron spectra for these states consist of rare lines
which can be well resolved.

Theoretical data for these states were calculated by Vaeck
and Hansen [13], Chen and Lin [14], Bauchau et al. [15],
van der Hart and Hansen [16]. The energy of the single and
triplet 153131 states were calculated by using Cowan’s code
in the paper [13]. All data were shifted to about 1eV for
C2* — Ne®" ions. It was explained by these authors that
data computed by the Cowan program are obtained using
the Hartree-Fock approximation, without taking into
account the correlation effects which are very important for
1523131’ states. The estimation of these effects (1eV for ions
with 0 < Z < 10) was also given. The same data obtained
by the conventional configuration—interaction method were
presented by Chen and Lin [14]. One fitting parameter for
the model potential which was obtained from 1s?nl data was
used. A model potential was used by Bachau et al. [15] but
the fitting parameter was given in the analytical form
without taking into account any experimental data. A very
large number of eigenfunctions (3s—8s, 3p—8p, 3d-8d, 4f-8f,
5g-8g, 6h—8h, 7i-8i) was involved in this configuration—
interaction method. The data for the single and triplet
1s23Inl’ states with 3 < n < 7 were obtained in this paper.
The energies of 1s23Inl’ states with 3 < n < 5 single terms
were calculated by van der Hart and Hansen [16] by using
a B-spline basis set. This basis set consists of two-electron
functions, which are products of the one-electron functions
which are B-spline solution of the O°* system.

In the present paper we used the perturbation theory
method in order to make ab initio calculations of energies of
1s?3130' and 1s®3/41' states and to obtain a direct contribu-
tion of the correlation part of the energy. The application of
the perturbation theory method by using the S-matrix
approach has some serious limitations. Computational diffi-
culties do in most cases not allow the evaluation of higher
than third order, or even than second order terms. The
correct treatment of the singularities arising at calculating
energies of autoionizing states requires partial summation of
the perturbation series [6, 17], which lead to loosening the
explicitness of the Z-dependence characteristics of non-
stationary levels. Relativistic effects are accounted for rather
incomplately and not always consistently up to now [4, 5,
18]. Together with these difficulties the clear realization of
the basic principle of the approach is required. But their
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formulation is scattered and incomplete. Most of the refer-
ences concerning the original formulation of the theory are
hardly available [1, 17]. Years of practical use have resulted
in many additions, corrections and recomprehension of
some sentences [19-23]. So the present paper is intended to
start a general review of the S-matrix approach, a brief
summary of its significant features and the most illustrative
results (1s?3131' and 1s%3141' states). Such a review should
cover both non-relativistic and relativistic calculations of
energies, radiative and non-radiative transition probabilities.
The first step of this program is the description of non-
relativistic energy calculations. It is mostly based on Ref. [1,
17] with regard to some other papers [19-23]. The formu-
lae are revised and rewritten in a more concise form, the
computer programs are written by using a new algorithm,
the old numerical results are checked and corrected in some
cases and new results are presented in this paper.

2. Diagram perturbation theory

We could not consider the problem in any detail. A reason-
able compromise seems to be achived when our account
deals with the practical application of the formalism, just
noting the basic facts constituting its theoretical founda-
tions. That is why we have dropped any details concerning
the development of the adiabatic S-matrix formalism and
the theory of the secular operator [1, 17, 19].

In the adiabatic formalism of Gell-Mann and Low [24]
the energy shift of a level due to interelectronic interaction is
given by

d
AE = lim iyg — % log <S,(0, —o0)>|,—4- ]

y= o
Using the expansion

5,0, —o0) =1 + ¢SO, — o) + ¢*SP(0, —
one can derive from eq. (1)

AE = lim {<S{)(0, — c0)>

=0

+ [2¢SP(0, —o0)> — <80, —0)»?]

+ 3¢SP(0, — o)y — 3¢S0, — o))

x (S0, —o0)) + (8§10, —00)»°] + ---}. )

The n-order term of the S-matrix, eq. (2), reads

1 0 0
H J_ wdtl e)’tl s J\_w

x T{H;(ty) -+ Hindts)}- 4

Now let relativistic interactions be small corrections, so that
their effect could be evaluated on a non-relativistic basis. In
the case of pure Coulomb interaction

o)+ (2)

S™(0, —o0) = dt, e’

1
H,, (1) = 5 . Z ) Vju'z; Jjai3
J1J2J3J]4
(t + O)a ot + 0)a;,(Da;,(2) )
where
1

Visizs jais = 626 jwl r; ',1_2 l//;;(rp o)

102

X YHrs, o)1y, 02)Y;,(ri01) (6)
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and ¥(r, o) = R,(r)Y,,(0, )d(ms, 6) is a hydrogenic func-
tion. An interaction Hamiltonian in the form (5) maximally
accounts for the symmetries of the corresponding, com-
bination of the creation and annihilation operators a;” and
a;, which greatly simplify further diagrammatization.

Equation (1) assumes averaging the S-matrix over a state
with the non-perturbed energy E® and is formally valid for
degenerated states, though one would have to sum terms
not cancelling in each order and the energy shift is obtained
using proper linear combinations of the zero order states
belonging to the subspace of the degenerate levels. We
confine ourselves, in this paper, to the case of n electrons in
open shells:

1
(I),,Q=m Y C2...a; - ar @ W)
Vi o

with @, denoting the state of the core and Q means
quantum numbers of the atomic system: L, S, M, M,. To
provide orthonormality of the wave function (7) the anti-
symmetric in all indexes coefficients C2 must obey

Yy Ccxe.,.C2. .. =nléQ, Q) 8)
o
The normal product of operators g; and a; is defined so
that it would vanish when averaged over the vacuum state
®,. Then it follows from the conventional relation for the
time-ordered product

T[aft)a; (¢)] = aft)a; () + NlafH)a; ()] ©®
and the anticommutation relations for ajt) = a; exp (—iE;1)
and a;" exp (iE;1) that
afta; (t) = 6(j, j)G{t — t) = {Taft)a; (£)>

= 68(j, J)) exp (—iEj[t —t])

X (1 —=n)o(t —t)—mn; 0t — t)] (10)
where n; = 1 for closed shells and n; = 0 for open or vacant
shells. According to the Wick’s theorem [25], the T-product
of any number of field operators can be expanded into a
sum of N-products with all possible pairing sets, including

the term without any pairings. Then with use of the equa-
tion

(OR|NLaj, --- a;,a;, -~ a;; 1| O
=" 0 oo
(n_m)' alza" o ;a C 1'"ancu’"'am'amﬂ“'an
X (01, 1)+ + 00t )01 1) =+ (s Jm) (1)

one can obtain the explicit expressions for the matrix ele-
ments {®2|S¥0, —0)|®2> and therefore formulate the
rules for their graphic representations.

The diagram as a whole implies the factor

e e
(n—m)!l"al,,_,am, o a1 a1’ amEmt 1 on
0 0
X J dtle‘ltl e I dtN eytN (12)

where N is the number of vertices, m is the number of
incoming (or outgoing) lines, ! is the number of loops. The
symmetry number I" is the number of topology conserving
permutations of lines and vertices, which do not change the
view of the diagram. The indexes o’ and « correspond to the



incoming and outgoing lines belonging to the same vertex
or connected with an electronic line. All indexes at the inter-
nal lines should be summed over. Let us notice that the
same rules apply for atomic states with n holes in a closed
shell, with the only addition that 2m-tailed diagrams should
be multiplied by a factor of (— 1)™.

All Feynman diagrams can be divided into “vacuum” dia-
grams, diagrams for one and more electrons above the core.
Examples of these diagrams are given on Fig. 1. To decrease
the number of diagrams (46 diagrams for the second order)
we decided to draw a point instead of a vertical line. In
these cases we join direct and exchanging parts (V};, . s
and V},;, ;,;) of each contribution. This will give 3 first
order diagrams (instead of 5) and 10 second order diagrams
(instead of 42). These diagrams are shown in Fig. 2 and Fig.
3. All diagram contributions include the radial integral:

Ry(nyliny 155 nylynsly)

© © rk<
= J r: dr, J dr, or} i
0 0 >
X Rn1l1(r1)anlz(rZ)Rn4l4(r2)Rn313(r1)

with radial hydrogen functions R,(r). It is useful to define
some expressions with these radial integrals:

(13)

Pyniliny 15 n,lyngly)

= Ry(niliny 1, 5 nulans )

l1 ls k lz l4 k k+(11+12+13+14)/2
>‘(o 0 0)(0 N - (14

X(nyliny 15 nylymgly)
= 2Ro(nylyny 15 ny 1 myly)

- ZPk(nllan bL; niliny 1), (15)
k

Y(nly;n3ly) = Z 2, + D)X(nylyny 1,5 ny 1y ngly)

n2l2 € fo

(16)

where f;, includes the core orbitals and sum over g, means
the sum over excited states. The core is 1s* for the configu-
rations considered here. Sum over nl € g, is sum over [ and
n where n includes sum over discrete and continuous hydro-

—

O

]
V
v
1

Y
Y
A

Fig. 1. Direct and exchanging Feynman diagrams.
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gen spectra (with core 1s? (n = 1) being excluded):
Yf)= % f+ j dkf (k). 17
n n=2 0

Below we represent contributions from the diagrams given
in Fig. 2 and Fig. 3. We divided all diagrams into “vacuum”
diagrams (1A, 2A, 2E), diagrams for one valence electron
n,l, (2B, 2C, 2H-c, 2H-d) and diagrams for two valence elec-
trons n,lyn, I, (2D, 2F, 2R-c, 2R-d).

2.1. Contribution of “‘vacuum” diagrams:

EAA) = ) @l 4+ )Y(nly;ndy),

nili € fo

Y X

n2l2 € go nala e fo

(18)

EQA) = @l + 1)d(l;, L)

1

E,,—E,’

X X X X
nil1 e go n2l2 ego n3lz e fo nalae fo
| Cly o 1)@L + 12l + 12l + 1)
E, + E,, + E,, + E,,

X Y*(ny 1y nyly) (19)

EQ2E) = —

2
X zk: I:m Pinyliny lysnylyngly)

I, I3 k
- Z {l: } k,}Pk(n1l1n2 Lyynglyngls)

k' l4

X Py(niliny s nylyng 14):|- (20)

2.2. Contributions of diagrams with one electron n, 1, above
the core:

Cn,l) = Yin, 1) 1)
S Y @+ 1) 1) ——

n2l2€go nalae fo Enz - En4

2B(na la) = -

X Y(nyly; ny 1) X(nylym, s nylany 1),

1
nzgm Enz - Ena

DIEDYEED)

nil1 € go n2l2 € go nalae fo

(22)

2C(na la) = - Yz(nZ la; Ny la)) (23)

2HC(na la) = -

@+ D@L, + D@L+ 1)
E, +E,, —E, —E

n4

2
X Ek: [m P,%(nlllnz lz; n4 l4nala)

L 1, k
- Z{l: k’}P Wniliny lysnglym, 1)

K l

X Py(nilinylysn,lyng 14)]- (24)

We can use eq. (24) with g, exchanged to f; in the sum over
n.ly, n,1, and f; exchanged to g, in the sum over n, I, for
the contribution of 2Hy(n, [,) diagram. As a result we obtain
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1A

Fig. 2. First order diagrams.

1C 1E

an expression with one sum over all hydrogen spectra and
two sums over closed shells which give only one term in the
sum over n,l; and n, I, (1s).

2.3. Contribution of diagrams with two electrons n,l,, n, 1,
above the core.

These contributions must include the LS momentum of this
two electron system. In this case we obtain diagonal and
non-diagonal elements since only the parity of the two-
electron system and LS (in non-relativistic approximation)
can be exact quantum numbers. As a result we must con-
sider two-electron states with the same momentum and
parity together. For example, there are three states of even
parity for the 1s23[3]' 1S configurations: 1s23s2, 1s23p? and
1s23d>. This is the reason why we must consider diagonal
and non-diagonal elements for these diagrams together. Let
us note that only two-electron diagrams give contributions
for non-diagonal elements. The second point which is neces-
sary to underline is that the contribution of each of any
order two-electron diagram (Q) has the same dependence on

R —
0

2B 2C

2D 2F
\@/

2H-¢ 2H-d

2R-h 2R-d

Fig. 3. Second order diagrams.
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LS which can be written in the form:
EQ(”1I1”2 ly; nylynyly, LS)
= (D)W oL D)2l + D2l + D2, + 1)

X Y (=1 (= 1588 Tymy Ly maLemy L 0 2 E
k l4 l3 k

L, L
I k}] @)

We can now write an expression for S%n,l;n,1,; nyl,nsls)
which does not depend on momentum LS. The expression
for the first order diagram (Q = 1E) becomes in this case
very simple:

l
+ (—1°S2(mylyny 153 mylymy n4){l:

SiB(nyliny by nylyns l3) = Pynyliny 1y nylynsly) (26)

where P, is given by eq. (14). We can take into account the
symmetry of the initial and final states for diagrams of the
second order which means that P, can be represented by
two terms:

S2nyliny by malangly) = 3TRn liny bys nylyngls)

+ 3T lyng 1y nylymgly). (27)

We can now write an expression for T2 where Q = 2D, 2F,
2R-c and 2R-d.

T%D(nlllnz lzs L l4 n3 l3)
1
= -4 Z ﬁ Y(nly; nyly)Pu(nlin, 1y nylynsls),

n#¥n1 “n n1
(28)

T%F(n1l1n2 Ly nglynsly)

Qls + )2l + 1)
E, + E,,— E, — E

nslsego nele € fo n1 ~ “ne

2
g I:(Zk- ) Palnslsms s milinglg
L I, k
X Pynslsnyly; nglyngle) — 2 Z {ls l1 k’}
14 5 6

X Pp(nslsnyly; nglsnil)Py(ns lsnyly; nglyngle)

—(2k+1)22(—1)'°'—k"”{"" ¢ "}
L oL I

k' K

K kK k
X Py(nslsngly; nelenyly)
L L s

X Ppnslsny s nelens 13):|, (29)

T2 (nyliny lys nylynsly)

vy ¥ @ls + 1)2s + 1)2k + 1)
nsls € go nele € go Ens + Ens - En —E

kK" kK kl\k" kK k
22D Lot U Ll

X Pp(nslsnsls, nylyngly)

(30)

X Prnslsnsls, nylynsly).



Table 1. Diagrams for one electron in open shell nl and core 1s>
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nl 1C 2B 2C 2H-c 2H-d sum

20 0.397805 —0.007744 —0.235553 —0.009669 0.002467 —0.250498
21 0.468526 —0.025406 —0.331308 —0.015593 0.001402 —0.370905
30 0.193206 —0.002518 —0.141970 —0.002704 0.000628 —0.146566
31 0.213120 —0.006205 —0.176810 —0.003837 0.000368 —0.186484
32 0.221799 —0.000732 —0.218048 —0.001628 0.000003 —0.220405
40 0.112927 —0.001088 —0.090564 —0.001123 0.000251 —0.092524
41 0.121188 —0.002476 —0.106294 —0.001535 0.000148 —0.110157
42 0.124768 —0.000382 —0.122780 —0.000708 0.000002 —0.123868
43 0.124997 —0.000009 —0.124946 —0.000191 0.000000 —0.125146

The expression for the contribution of the 2R-d diagram
looks exactly as the one for the 2R-c diagram (see eq. (30))
but g, must be exchanged to f, in the sum over nsls and
ng lg indexes. There will be only one term in this sum in the
case which is considered here (1s? core, so ns =ng = 1, Is,
I¢ = 0). The contributions of these diagrams were computed
for 1s2313]' states and the results of the calculations are
given in Tables I and II.

3. Numerical calculation of diagram contributions for
1523137 and 1s23/47 states

Table I lists the data for the contributions of the diagrams
with one electron outside the 1s* core. We included the
results for 1522 states also since the data for these states are
necessary for an identification of electron spectra. The last
column of Table I, “sum”, gives the contribution of the
second order diagrams. Table II lists the data for contribu-
tions of diagrams with two electrons 3I, 3I' and 3I, 4/
outside the 15 core. We included also the results for 21, 2I'
electrons outside the 1s* core. Both diagonal and non-
diagonal elements were calculated. Contributions of
“vacuum” diagrams for 1s*> were given by many authors and
we can repeat their result (see for example, Ivanova and Saf-
ronova [197):

E(1A) = 0625, E(2A) = —0.111003, E(2E)= —0.046662.
(31)

The sums of these diagrams are given in Table III. Follow-
ing our dividing system to core and electron outside the
core we represent the energy of 1s?nln’l in this form:

E(1s*n,lin, 1, — 1s’>n,11n, 1,, LS)
= E(1s?) + E(nlyn,1,, LS),
E(1s*n,lin, 1, — 1s’>ny1l3n,1,; LS)
= Em,lin, 1, — ngylyn,ly; LS). (32

As we said before “vacuum” diagrams and diagrams with
one electron outside the core do not contribute to non-
diagonal matrix elements. We did not write the same
designations twice for diagonal elements (see Table III). As a
result Z-expansion for diagonal and non-diagonal elements
can be presented in the following form (E;(1s?) was taken
from [18]):

1
2—n§> + E,Z+ E,,
E(1s*) = —Z* 4+ 0.625Z — 0.157665 + 0.00869/Z,

E(nlllnz lz - n3 l3 n4 l4; LS) = El Z + Ez . (33)

According to the perturbation theory for degenerate states

1
E(nlin,1,, LS) = — Zz(ﬁ +

(Safronova and Senashenko [18]) contributions of each
order can be recalculated by using eigenvectors obtained
after diagonalization of the first order matrix. It is simple to
explain. Diagonalization of the first order matrix removes
the degeneracy of the states and these eigenvectors play the
role of zero order functions, so we can recalculate each
order with these functions since each order is a perturbation
of zero order. We made such a diagonalization and the
recalculation of the second order. The results for 1s?3I3/
and 1s23/4] states are given in Table IV.

We can use these data for the comparison with other
theoretical data and for the discussion of experimental data
given by electron spectra.

For ejected-electron spectra we can calculate the energy
counted from the energies of 1s22] states. We represent these
energies in the same form as the one for 15?3130’ states:

E(1s%21, 2l) = E(1s?) + E(21, %)) (34
where
ZZ
E(2s,%S) = — ? + 0.397805Z — 0.250498 — 0.037/Z, (35)
Z2
EQ2p, *P) = — Ky + 0.468526Z — 0.370905 — 0.067/Z. (36)

We should mention that E; coefficients were calculated
numerically for two-electron systems only. The values of E;
for three-electron systems were estimated by comparison
with experimental data (see for detail Safronova & Sena-
shenko [18]). These coefficients were not calculated for four-
electron systems.

4. Discussion of results

By using the Z-expansion formula for binding energy:
E(1s?3131, LS) — E(1s*) = —Z%/9 + E,Z + E,,

E(1s*3141, LS) — E(1s*) = —25Z?/288 + E,Z + E, 37

with coefficients E; and E, given by Table IV we can obtain
data for this energy at least for ions with 7 < Z < 10 since
relativistic corrections and third order diagram’s contribu-
tion are small for these ions. Tables V and VI give these
data for O**. We compare our results with data given in
papers [13-16] for O**(1s23I3l') and with data from [15]
for O**(1s2314l'). Let us discuss data given by Vaeck and
Hansen [13] more in detail. These data were obtained in the
Hartree-Fock approximation and shifted with 1.2eV
(0.044a.u.) to account for correlation effects. By pertur-
bation theory it is possible to present the energy obtained in
the Hartree-Fock approximation (E¥F) in a form of a series

Physica Scripta 53



694

M. S. Safronova, U. I. Safronova, N. Nakamura and S. Ohtani

Table II Diagrams for two electrons in open shell n,l,, n, 1, with core 1s*

nidyn,l, nylym,l, LS 1E 2D oF 2R-c 2R-d

2020 2020 00 0.150390635 —0.187261 0.001861 —0.038107 —0.000642
2021 2021 10 0.191406250 —0.245530 —0.004968 —0.096307

2021 2021 11 0.132812500 —0.206857 0.004103 —0.029433

2121 2121 00 0216796875 —0.366026 0.003450 —0.116373 —0.001166
2121 2121 11 0.164062500 —0273731 —0.003126 —0.039386

2121 2121 20 0.185156250 —0.310649 —0.001078 —0.087334

2020 2121 00 —0.050743676 0.033491 0.006331 —0.029813 0.000865
3030 3030 00 0.0664062500 —0.099281 0.000118 —0.018074 —0.000037
3031 3031 10 0.0828993056 —0.128984 —0.000403 —0.041466

3031 3031 11 0.0546875000 —0.095956 0.000323 —0.008440

3032 3032 20 00776909722 —0.122837 —0.000026 —0.043000

3032 3032 21 00685763889 —0.118773 —0.000003 —0.020727

3131 3131 00 0.0862630208 —0.157284 0.000117 —0.046933 —0.000069
3131 3131 11 00646701389 —0.117714 —0.000165 —0.012561

3131 3131 20 00733072917 —0.133542 —0.000099 —0.032719

3132 3132 10 00926215278 —0.171508 0.000034 —0.066511

3132 3132 11 00756944444 —0.144547 0.000020 —0.025410

3132 3132 20 00649305556 —0.124857 —0.000016 —0.014289

3132 3132 21 00744791667 —0.138984 —0.000051 —0.022283

3132 3132 30 00929625496 —0.169983 —0.000008 —0.065753

3132 3132 31 00650297619 —0.127425 0.000055 —0.019894

3232 3232 00 0.1074869792 —0.196773 —0.000012 —0.050836 22-7
3232 3232 11 00868923611 —0.183840 —0.000018 —0.042716

3232 3232 20 0.0856832837 —0.165363 0.000005 —0.029959

3232 3232 31 0.0780257937 —0.156125 0.000008 —0.023605

3232 3232 40 00898210152 —0.178297 —0.000006 —0.050410

3030 3131 00 —0.0244321403 0.028603 0.000550 0.020163 0.000051
3030 3232 00 00101904140 —0.004544 —0.000008 —0.009482 0.000004
3032 3131 20 00186050653 —0.023950 —0.000123 —0.026908

3032 3232 20 —0.0082359150 0.001663 —0.000009 —0.016454

3131 3232 00 —0.0256349809 0.039782 0.000021 0.025348 0.000005
3131 3232 11 —0.0106756718 0.015794 0.000053 0.003475

3131 3232 20 —0.0117917219 0.018073 0.000017 0.015005

3031 3132 10 —0.0242628904 0.028223 0.000144 0.033962

3031 3132 11 —0.0097051562 0.015504 0.000107 0.004582

3040 3040 00 0.0486804 —0.078015 0.000094 —0.018094 —0.021627
3040 3040 01 0.0411308 —0.065305 0.000000 —0.008455

3041 3041 10 0.0479345 —0.085567 —0.000074 —0.024342

3041 3041 11 0.0450885 —0.079911 0.000046 —0.011018

3042 3042 20 0.0515064 —0.099897 —0.000015 —0.030677

3042 3042 21 0.0482339 —0.085712 0.000001 —0.016204

3043 3043 30 0.0589976 —0.109291 0.000000 —0.042235

3043 3043 31 0.0529136 —0.096086 0.000000 —0.022746

3140 3140 10 0.0473538 —0.078947 —0.000114 —0.020408

3140 3140 11 0.0440375 —0.073274 0.000074 —0.011532

3141 3141 00 0.0606227 —0.112968 0.000082 —0.047903 —0.000410
3141 3141 01 0.0475237 —0.088791 0.000002 —0.016067

3141 3141 10 0.0408356 —0.075941 0.000000 —0.007334

3141 3141 11 0.0475699 —0.088228 —0.000131 —0.013652

3141 3141 20 0.0527910 —0.098124 —0.000084 —0.029598

3141 3141 21 0.0435109 —0.081081 0.000001 —0.011608

3142 3142 10 0.0564604 —0.111703 0.000017 —0.041830

3142 3142 11 0.0527143 —0.102065 0.000004 —0.021800

3142 3142 20 0.0463802 —0.088924 —0.000011 —0.010968

3142 3142 21 0.0479199 —0.093697 —0.000024 —0.016436

3142 3142 30 0.0545100 —0.108681 0.000000 —0.040708

3142 3142 31 00493524 —0.093963 0.000021 —0.016448

3143 3143 20 0.0652550 —0.121561 0.000003 —0.038889

3143 3143 21 0.0579002 —0.119752 0.000004 —0.037597

3143 3143 30 0.0502040 —0.095556 0.000000 —0.012900

3143 3143 31 0.0528447 —0.104601 —0.000001 —0.022594

3143 3143 40 0.0654607 —0.128888 0.000002 —0.064769

3143 3143 41 0.0524817 —0.101755 0.000005 —0.022754

3240 3240 20 0.0480012 —0.080684 —0.000010 —0.021518

3240 3240 21 0.0463318 —0.078617 —0.000001 —0.015834

3241 3241 10 0.0536396 —0.101257 0.000011 —0.034543

3241 3241 11 0.0505560 —0.095741 0.000005 —0.021449

3241 3241 20 0.0456384 —0.086814 —0.000010 —0.012678

3241 3241 21 0.0466655 —0.088664 —0.000014 —0.014440

3241 3241 30 0.0518825 —0.098081 0.000004 —0.028679
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nidyn,l, nylym,l, LS 1E 2D oF 2R-c 2R-d
3241 3241 31 0.0480660 —0.091232 0.000011 —0.018343
3242 3242 00 0.0701015 —0.130563 —0.000005 —0.052379 0.000007
3242 3242 01 0.0521779 —0.101800 —0.000003 —0.019996
3242 3242 10 0.0489259 —0.098713 —0.000002 —0.017646
3242 3242 11 00592084 —0.123397 —0.000014 —0.041558
3242 3242 20 0.0582336 —0.113159 0.000003 —0.027171
3242 3242 21 0.0476965 —0.094302 0.000000 —0.014267
3242 3242 30 0.0462277 —0.092097 0.000001 —0.013012
3242 3242 31 0.0540995 —0.108041 0.000003 —0.021832
3242 3242 40 0.0606178 —0.120326 —0.000004 —0.039726
3242 3242 41 0.0489556 —0.097389 —0.000001 —0.019870
3243 3243 10 0.0709863 —0.134241 —0.000013 —0.036523
3243 3243 11 0.0622041 —0.126298 0.000005 —0.027097
3243 3243 20 0.0555388 —0.112721 0.000026 —0.019625
3243 3243 21 0.0618631 —0.130403 —0.000029 —0.039092
3243 3243 30 0.0640398 —0.124362 —0.000053 —0.035039
3243 3243 31 00523184 —0.102313 0.000056 —0.013843
3243 3243 40 0.0496807 —0.099858 0.000093 —0.012899
3243 3243 41 0.0609501 —0.122947 —0.000089 —0.035874
3243 3243 50 0.0736151 —0.147216 —0.000138 —0.091934
3243 3243 51 0.0501193 —0.099778 0.000135 —0.015392
3040 3141 00 0.0157511 0.017069 0.000332 0.019609 0.000032
3040 3141 01 —0.0112582 0.017221 0.000133 0.007444
3141 3042 20 0.0089803 —0.016760 —0.000004 —0.019861
3141 3042 21 0.0066069 —0.008355 —0.000074 —0.004086
3143 3240 20 0.0032725 —0.014324 —0.000116 —0.000961
3143 3240 21 —0.0026220 0.008578 0.000117 0.002060
3143 3242 20 0.0041759 —0.010400 —0.000008 —0.014904
3143 3242 21 0.0010353 —0.000768 0.000011 —0.000997
3143 3242 30 0.0011415 —0.000531 0.000026 0.001012
3143 3242 31 0.0040356 —0.009467 —0.000028 —0.007900
3143 3242 40 0.0090306 —0.021704 —0.000043 —0.031663
3143 3242 41 0.0024289 —0.001377 0.000044 —0.001293
3240 3242 20 —0.0025397 —0.003073 —0.000005 0.006056
3240 3242 21 —0.0014965 —0.000055 —0.000001 0.002352
3041 3140 10 0.0118012 —0.016509 —0.000169 —0.017163
3041 3140 11 0.0037926 —0.003288 —0.000134 —0.002509
3041 3142 10 —0.0107543 0.016918 0.000067 0.018602
3041 3142 11 —0.0093686 0.015506 0.000049 0.006799
3142 3140 10 —0.0034819 —0.003280 0.000038 0.013428
3142 3140 11 —0.0026218 0.004285 0.000057 0.002243
3043 3241 30 0.0004666 —0.007152 0.000074 —0.009302
3043 3241 31 0.0008943 0.004096 —0.000075 0.001413
3043 3243 30 —0.0079431 0.012161 —0.000001 0.020926
3043 3243 31 —0.0022391 0.001750 —0.000001 0.004096
3241 3243 10 0.0044747 —0.010005 —0.000036 —0.004256
3241 3243 11 —0.0033456 0.009083 0.000032 0.003914
3241 3243 20 —0.0019899 0.003275 0.000024 0.000662
3241 3243 21 0.0017328 —0.005534 —0.000026 —0.001537
3241 3243 30 0.0022515 —0.006581 —0.000021 —0.002655
3241 3243 31 —0.0019286 0.003623 0.000016 0.001434
3040 3242 00 0.0045605 0.003455 —0.000008 —0.008006 —0.000038
3040 3242 01 0.0038107 —0.004035 0.000001 —0.004476
3042 3143 20 —0.0091031 0.022207 0.000003 0.012838
3042 3143 21 —0.0063435 0.012557 0.000002 0.004309
3042 3240 20 0.0057624 —0.005877 —0.000012 —0.014457
3042 3240 21 —0.0020187 0.005618 0.000001 0.002697
3141 3242 00 —0.0138917 0.018771 —0.000015 0.024248 0.000005
3141 3242 01 —0.0105361 0.018263 0.000035 0.010214
3141 3242 10 —0.0063902 0.010830 0.000029 0.003286
3141 3242 11 —0.0065964 0.008758 0.000019 0.003274
3141 3242 20 —0.0066275 0.008910 —0.000004 0.010850
3141 3242 21 —0.0054327 0.009345 0.000020 0.004887
3042 3242 20 —0.0037942 0.004458 —0.000007 —0.008006
3042 3242 21 —0.0024169 0.003163 0.000002 —0.004476
3141 3143 20 —0.0006369 0.000086 —0.000004 0.005036
3141 3143 21 —0.0014976 0.002139 0.000000 0.001827
3141 3240 20 0.0084792 —0.011102 —0.000050 —0.014473
3141 3240 21 0.0054553 —0.005916 —0.000026 —0.005124
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Table II continued

nilinyl, nylyn,l, LS 1E 2D 2F 2R-c 2R-d
3041 3241 10 —0.0048060 0.004345 0.000019 0.013806
3041 3241 11 —0.0018973 0.003563 —0.000007 0.003059
3041 3243 10 0.0003943 —0.001755 —0.000001 —0.000074
3041 3243 11 0.0016846 —0.002912 0.000000 —0.001127
3043 3142 30 0.0089407 —0.024331 —0.000004 —0.021115
3043 3142 31 0.0041141 —0.005050 0.000000 —0.003195
3140 3241 10 —0.0099328 0.011391 0.000061 0.014306
3140 3241 11 —0.0080566 0.010579 0.000047 0.006734
3140 3243 10 —0.0023586 0.010027 —0.000001 0.001153
3140 3243 11 0.0015188 —0.002610 0.000001 —0.001407
3142 3241 10 0.0087584 —0.014842 0.000012 —0.025560
3142 3241 11 —0.0019517 0.004478 —0.000006 0.002831
3142 3241 20 —0.0005055 0.002022 0.000008 0.001350
3142 3241 21 0.0063133 —0.010782 —0.000023 —0.007193
3142 3241 30 0.0120336 —0.019649 —0.000006 —0.022972
3142 3241 31 0.0027132 —0.002657 —0.000023 —0.002070
3142 3243 10 —0.0080607 0.015735 —0.000002 0.005187
3142 3243 11 —0.0069729 0.014984 0.000002 0.005827
3142 3243 20 —0.0042718 0.007445 0.000003 0.001255
3142 3243 21 —0.0043912 0.009285 0.000000 0.001274
3142 3243 30 —0.0043738 0.009415 —0.000003 0.006333
3142 3243 31 —0.0036620 0.007005 0.000003 0.003191
of 1/Z (see [18, 19])
EMF(1s%3131', LS) = E"¥(1s%) + EY¥ (3131, LS) (38)
where
Table III. Z-expansion for diagonal and non-diagonal elements for 1s23131' states
E(1523ll 312 - 152311312 ) LS) = E(ISZ) + E(3ll3lz N LS),
E(1s%31,31, — 1s®31, 31,; LS) = E(31,31, — 31,31,; LS),
Z2
E(3ll312’ LS)= —?‘i‘ EIZ +E2,
ZZ
EHF311312 Py LS) = — ? + EIZ + EZ[F’ E(3ll3lz - 3l3 314; LS) = EIZ + E2 .
ninyly —nglyng,l, LS E, E, EXF ESORR
3s? s 0.452818 —0.410406 —0.396532 —0.013874
3s3p p 0.489225 —0.503903 —0.469569 —0.034334
3s3p ’p 0.461013 —0.437123 —0.430276 —0.006847
3s3d D 0.492696 —0.532834 —0.498967 —0.033867
3s3d D 0.483581 —0.506474 —0.492842 —0.013632
3p? s 0.512503 —0.577137 —0.539403 —0.037734
3p? ’p 0.490910 —0.503408 —0.493192 —0.010216
3p? D 0.499547 —0.539328 —0.511445 —0.027883
3p3d p 0.527540 —0.644874 —0.582638 —0.062236
3p3d 5p 0.510613 —0.576826 —0.550829 —0.021997
3p3d D 0.499850 —0.546051 —0.546839 0.000788
3p3d D 0.509398 —0.568207 —0.562110 —0.006097
3p3d F 0.527881 —0.642633 —0.587044 —0.055589
3p3d 5F 0.499949 —0.554153 —0.538890 —0.015263
342 s 0.551085 —0.688431 —0.682941 —0.005490
342 5p 0.530490 —0.667384 —0.629008 —0.038376
3d2 D 0.529281 —0.636127 —0.626225 —0.009902
342 5F 0.521624 —0.620532 —0.607284 —0.013248
342 G 0.533419 —0.669523 —0.636561 —0.032926
3s? 3p? s —0.0244321 0.049367
3s? 342 s 0.0101904 —0.014034
3s3d 3p? D 0.0186051 —0.050981
3s3d 342 D —0.0082359 0.018108
3p? 342 s —0.0256350 0.065156
3p? 342 ’p —0.0106757 0.019322
3p? 342 D —0.0117917 0.033095
3s3p 3p3d p —0.0242629 0.062329
3s3p 3p3d 5p —0.0097052 0.020193
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Table IV. Z-expansion for energy of Be-like systems
E(1s’n,lyn, 1,, LS) = E(1s®>) + E(n,l;n,1,, LS), ,l;n,1,,LS)= —Zz(zin2 + zinz) +EZ +E,.
1 2

nydyn, 1, LS E, E, nydin, 1, LS E, E,

2s2 s 0.934274 —0.719751 3p4d F 0.383248 —0.421123
2s2p p 1.057737 —0.968209 3d4s D 0.383016 —0.409605
2s2p 5p 0.999143 —0.853591 3p4d D 0.383146 —0.409171
2p? 1S 1.165576 —1.227321 3p4d p 0.385268 —0.421082
2p? 5p 1.101114 —1.058053 3p4d 3F 0.385930 —0.421584
2p? D 1.122208 —1.140871 3p4f 3G 0.389603 —0.439765
3s2 s 0.444083 —0.398090 3d4p D 0.388562 —0.430559
3s3p p 0.477468 —0.481791 3p4p D 0.392695 —0.457977
3s3p 5p 0.459182 —0.434568 3p4f F 0.388046 —0.421917
3s3d D 0477172 —0.484951 3p4p s 0.391787 —0.447821
3s3d D 0.483581 —0.506474 3p4f 3F 0.389503 —0.431785
3p? s 0.504810 —0.557460 3d4p 3F 0.391248 —0.437468
3p? 5p 0.488214 —0.504810 3d4d D 0.394634 —0.458978
3p? D 0.506171 —0.567689 3p4d p 0.390479 —0.429421
3p3d p 0.539297 —0.666987 3d4d F 0.393069 —0.447550
3p3d ’p 0.512444 —0.579381 3d4p D 0.394237 —0.447539
3p3d D 0.499850 —0.546051 3d4f G 0.396477 —0.458215
3p3d D 0.509398 —0.568207 3d4d 3G 0.396519 —0.457902
3p3d F 0.527881 —0.642633 3d4f H 0.396915 —0.460586
3p3d 3F 0.499949 —0.554153 3d4d p 0.397333 —0.461975
342 s 0.567514 —0.720424 3d4p 3p 0.396077 —0.451502
3d? ’p 0.533186 —0.666728 3d4f 'H 0.420411 —0.584839
342 D 0.538181 —0.655649 3d4d G 0.407398 —0.528294
3d2 3F 0.521624 —0.620532 3p4f D 0.400099 —0.468529
342 G 0.533419 —0.669523 3d4d 3F 0.402126 —0.481184
3s4s 3s 0.343912 —0.306499 3d4f F 0.414681 —0.529765
3s4s s 0.349367 —0.344585 3d4p F 0.405918 —0.503375
3s4p p 0.353334 —0.335017 3p4f G 0.403365 —0.481320
3s4p 5p 0.356221 —0.341183 3d4f 3F 0.401281 —0.465592
3s4d D 0.361412 —0.360280 3d4d p 0.407475 —0.508180
3s4d D 0.363415 —0.369362 3d4f D 0.403520 —0.478460
3s4f 3F 0.370064 —0.388418 3d4f 3G 0.407746 —0.504461
3s4f F 0.371458 —0.391039 3d4f D 0.409491 —0.512359
3p4s ’p 0.367426 —0.360590 3p4f D 0.402659 —0.464063
3p4s p 0.374325 —0.390330 3d4p p 0.410932 —0.520821
3p4p p 0.373304 —0.378575 3d4d 3s 0.405047 —0.477456
3d4s D 0.375747 —0.391003 3d4d D 0.412962 —0.514883
3p4p D 0.376205 —0.393484 3d4f p 0.412510 —0.507550
3p4d D 0.380393 —0.409366 3d4f p 0.420626 —0.524481
3p4p 3s 0.378881 —0.396464 3d4d s 0.425259 —0.549379
3pdp 5p 0.380178 —0.399714

E¥F(1s%) = —Z? + 0.625Z — 0.111003 — 0.00106/Z,

2

z
EY*(313l', LS) = — — + E,Z + E5*.

9 (39)

We do not discuss calculations of EYF further since the
space of the paper is limited. Data for E5* were calculated
(see for detail [18, 197 and given in Table III. The contribu-
tion of correlation effects to the energy (E°*}) can be
defined as the difference between the total energy E and
EMF. As we can see from the comparison of egs (33) and eqs
38, 39) the first contribution to ES°*® gives the second order
term of perturbation theory:

ECORR(152) — _0.046662 + 0.00975/Z,
ECORR(3]3) [.§) = ESORR, (40)

The value of ESP*® are given in the last column of Table III.
We can see that this value is negative for almost all terms. It
will be exactly the leading term for ECORR of the binding

energies. We can say that correlation contributions for
binding energy are in the range of 0.0008—0.062 a.u. But this
contribution was estimated as a positive value which is
equal to 0.044 a.u. in paper [13]. We can explain this value
by different representation of data since in this paper the
energy which was counted from the 1s? state is given. We
can guess that the exact value for this energy was subtracted
from the total energy of 1s*3I3I' states obtained in the
Hartree-Fock approximation. In this case E°®**(1s2) can be
subtracted from ECORR(3[3l, LS) given by eq. (40). In the
result the range of the correlation contribution can be esti-
mated in the range 0.047-0.016 a.u. and in the middle it is
possible to think that it will be 0.044 a.u. which was given
for this contribution by Vaeck and Hansen [13]. Let us
return to the discussion about the difference in the theoreti-
cal data given in Table V.

There are rather large differences between our data and
data from [14] and much better agreement with data in [15,
16]. It is not possible to estimate the correlation contribu-
tion from these data sine a model potential was used. We
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Table V. 152331 states for OV. Energy (a.u.) counted from
1s?
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Table V1. 1s%314' states for OV. Energy (a.u.) counted from
1s?

Conf  Level P.T. [13] [14] [15] [16] Conf. Level PT. [15]
152352 1S —3.9565 —3.9468 —3.9817 —3.9654 —3.9620 3s4s 3s —3.1108 —3.1189
1s%3s3p 3P —3.8722 —3.8660 —3.8891 —3.8841 3s4s s —3.1052 —3.0907
1s%3s3p 'P —3.7732 —3.7594 —3.7991 —3.7823 —3.7794 3s4p p —3.0639 —3.0697
1s?3s3d  'D —3.7787 —3.7667 —3.7917 —3.7900 —3.7850 3s4p p —3.0470 —3.0554
1s?3s3d 3D —3.7489 —3.7300 —3.7638 —3.7558 3s4d D —3.0245 —3.0301
1s%3p? p —3.7095 —3.7006 —3.7160 —3.7225 3s4d D —3.0176 —3.0224
1s%3p? 3p —3.7095 —3.7006 —3.7160 —3.7225 3s4f 3F —2.9835 —2.9877
1s?3p3d  3F —3.6657 —3.6491 —3.6664 —3.6730 3s4f F —2.9749 —2.9780
1s?3p3d 'D —3.6584 —3.6455 —3.6620 —3.6663 —3.6646 3p4s 3p —2.9767 —2.9856
1s%3p? s —3.6301 —3.6197 —3.6385 —3.6445 —3.6442 3p4s p —2.9513 —2.9553
1s%3p? D —3.6294 —3.6087 —3.6322 —3.6336 —3.6344 3pdp p —2.9477 —2.9568
1s?3p3d 3D —3.6041 —3.5903 —3.6091 —3.6118 3dd4s D —2.9406 —2.9464
1s?3p3d 3P —3.5909 —3.5756 —3.5951 —3.5997 3pdp D —2.93%4 —2.9452
1s%3d? 3F —3.5587 —3.5389 —3.5565 —3.5582 3p4d D —2.9218 —2.9243
1s?3p3d 'F —3.5307 —3.4838 —3.5304 —3.5356 —3.5370 3pdp 3s —2.9210 —2.9295
1s%3d? G —3.5133 —34727 —3.5110 —3.5154 —3.5134 3pdp 3P —29138 —29211
1s%3d? 3p —3.5123 —3.4696 —3.4896 —3.4922 3p4d F —29107 —29127
152342 D —3.4613 —3.4139 —3.4749 —3.4737 —34720 3d4s D —2.9010 —2.9054
1s?3p3d 'P —3.4637 —34176 —3.4683 —3.4661 —3.4680 3p4d D —2.8996 —2.9061
152342 s —3.2914 —3.2486 —3.3195 —3.3231 —3.3222 3p4d p —2.8945 —2.8986
1s%2p 2p —4.6311 —4.6367 —4.6378 3p4d 3F —2.8897 —2.8959
1s%2s 23 —5.0681 —5.0758 —5.0689 3p4f 3G —2.8785 —2.8844
3d4p D —2.8776 —2.8808
3pdp p —2.8720 —2.8648
think that by using a model potential and taking into 3p4f 'F —2.8731 —2.8838
. . 1
account a very large number of configurations correlation ip:f’ 3:_ —g'g‘;i; —3'27;2
effects were computed at least in the frame of the second P 3 —287 —287
) . . 3d4p F —2.8630 —2.8664
order (or a.httl'e less? in [15]. Qn the otheF h.and the third 3444 3p _ 28575 28439
order contribution will be negative and preliminary equal to 3p4d 3p —2.8611 —2.8719
(—0.1-0.2)/Z. (see egs (35, 36) and Table III, IV). In this case 3d4d 'F —2.8586 —2.8591
. . ., . . 3
it can give us an additional —0.01-0.025 a.u. for the binding gg:? lg —g'gizg —g'gﬁg
energy of O**. We can see that T.P. data and data from . - -
. . C e . 3d4d G —2.8413 —2.8439
[15] disagree in this limit. ' 3d4f sH —2.8408
Let us note that data for electron spectra can be obtained 3d4d ip —2.8395 28375
as the difference between the E(313!, LS) and E(2l, 2]) data. 3d4p P —2.8384 —2.8430
. . . 1
In order to know the contribution of the correlation effects gg:fi 1g —g'gzl 27853
to these values we can find the difference between ESCR® ; ) —28247 —27
: : CORR (21 2P) which i 1t 3p4 D —2.8233 —2.8226
given in Table III and of E5°*® ( P, ).w ich is equal to 3d4d 3R 28197 28176
—0.012446 a.u. We can see that this difference is almost 3d4af i —2.7679 _28719
equal to zero for some terms (3s3p'P, 3s3d'D, 3s3d3D,  3d4p 'F —2.8116 —28113
. . . . 1
3p?3P, 3p3d 3F, 3d23F). It is very interesting that in the gg:i 31? —g'gi(l)g —g'g‘l‘gg
result we obtain zero effect by subtractions of two equal 2dad sp :2'8039 _ 27801
contributions. We did not compare our dat'a with experi- 3d4f 1p —2.8059 —2.8042
mental data (see for example [12]) because this could not be 3d4f 3G —2.7980 —2.7950
a direct comparison. It is necessary to take into account 3d4f D —2.7920 —2.7794
.« . . . . . 1
post-collision interaction (PCI) by which experimental data gg:f 11? _3'7223 —g'séi(l)
can be shifted for some levels on 0.02-0.048 a.u. [12]. We ad 43 3 :2';926 :2';01 4
hope to estimate this Cf)ntribution more aocurate!y in the 3d4d 1p _2:7667 _2:7799
future. Also the resolution of spectra does sometimes not 3d4af 3p —27630 —27629
allow us to measure the energy very accurately in order to 3d4f P —2.7150 —2.7104
3d4d s —2.7029 —2.7130

be a referee for theoretical approaches.

5. Conclusion

We reviewed some features of non-relativistic energy calcu-
lations in S-matrix perturbation theory. One of the most
appealing advantages is profound explicitness. We calcu-
lated 1/Z expansion coefficients for highly excited states
which were discovered by new experimental techniques. Our
theoretical data can be used for the identification of electron
spectra and also for the prediction of new experimental
results.
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It is useful to calculate correlation energies leaving only
correlation diagrams. It is correct, unfortunately, only for
closed shell (1s2, for example) and the correlation energy for
the states with two electrons above the core was obtained as
the difference between two series of 1/Z expansion. Another
approach assumes the basic of Hartree—Fock functions in
place of Coulomb ones, which reduces the theory to non-
degenerate case, but drops the convenient explicitly of Z-
dependence. Moreover, the Hartree—Fock basis does not



improve the rapidity of the convergence of the 1/Z expan-
sion.
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